首页> 外文OA文献 >Bundle-Level Type Methods Uniformly Optimal for Smooth and Nonsmooth Convex Optimization
【2h】

Bundle-Level Type Methods Uniformly Optimal for Smooth and Nonsmooth Convex Optimization

机译:束级类型方法对光滑和非光滑的一致最优   凸优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The main goal of this paper is to develop uniformly optimal first-ordermethods for convex programming (CP). By uniform optimality we mean that thefirst-order methods themselves do not require the input of any problemparameters, but can still achieve the best possible iteration complexitybounds. By incorporating a multi-step acceleration scheme into the well-knownbundle-level method, we develop an accelerated bundle-level (ABL) method, andshow that it can achieve the optimal complexity for solving a general class ofblack-box CP problems without requiring the input of any smoothnessinformation, such as, whether the problem is smooth, nonsmooth or weaklysmooth, as well as the specific values of Lipschitz constant and smoothnesslevel. We then develop a more practical, restricted memory version of thismethod, namely the accelerated prox-level (APL) method. We investigate thegeneralization of the APL method for solving certain composite CP problems andan important class of saddle-point problems recently studied by Nesterov[Mathematical Programming, 103 (2005), pp 127-152]. We present promisingnumerical results for these new bundle-level methods applied to solve certainclasses of semidefinite programming (SDP) and stochastic programming (SP)problems.
机译:本文的主要目标是为凸规划(CP)开发统一的最优一阶方法。统一最优性是指一阶方法本身不需要任何问题参数的输入,但仍可以实现最佳的迭代复杂度范围。通过将多步加速方案合并到众所周知的捆绑级别方法中,我们开发了一种加速捆绑级别(ABL)方法,并表明该方法可以解决常规黑箱CP问题的最佳复杂性。输入任何平滑度信息,例如问题是平滑,不平滑还是弱平滑,以及Lipschitz常数和平滑度级别的特定值。然后,我们开发此方法的更实用的受限内存版本,即加速代理级(APL)方法。我们研究了Nesterov最近研究的用于解决某些复合CP问题和一类重要的鞍点问题的APL方法的一般化[Mathematical Programming,103(2005),pp 127-152]。对于这些新的束级方法,我们提供了有希望的数值结果,这些方法可用于解决某些类别的半定性编程(SDP)和随机编程(SP)问题。

著录项

  • 作者

    Lan, Guanghui;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号